Proposed Semester - Wise Course Curriculum for 2-year M.Tech. in ''Renewable Energy'' as per New PG Ordinance -2019-2020

	Semester I				Semester II		
Cat.	Course	L-T-P	Cr.	Cat.	Course/ Thesis	L-T-P	Cr.
DC	Introduction to Energy Systems	3-0-0	9	DE	Departmental Elective-3	3-0-0	9
DC	Materials for Energy Systems	3-0-0	9	DE	Departmental Elective-4	3-0-0	9
DC	Instrumentation and Control ofEnergy Systems	3-0-3	12	DE	Departmental Elective-5	3-0-0	9
DE	Departmental Elective-1	3-0-0	9	DE	Departmental Elective-6	3-0-0	9
DE	Departmental Elective-2	3-0-0	9	DE	Departmental Elective-7	3-0-0	9
DP	Renewable Energy Laboratory	0-0-3	3	DT	Thesis (One Unit)		11
General /Comm on	Introduction to Data Science and its Applications	2-0-0	6	Electives - 3	Photovoltaic Power Plants		
1	Energy, Environment and Sus	tainability		Elect	Solar Thermal Systems		
Electives - 1	Mathematical Techniques			Electives - 4	Wind Energy Systems		
Ele	Alternative Fuels for Transpo	rtation		Electi	Geothermal Energy Systems		
s - 2	Electrical Conversion, Control and Grid Integration			Electives - 5	Biomass Energy Systems		
Electives - 2	Energy Storage			Electi	Reliability and Life Testing / Ana	alysis	
E	Thermodynamics			9-s	Energy Systems Modelling and A	Analysis	
				Electives	Urban Solid Waste Technology a	nd Manage	ment
				Ele	Tidal and Wave Energy		
					Economics and Financing of Ren	ewable Ene	ergy
				Electives	Hydrogen Energy Systems		
				Elé	Small Hydro Energy Systems	-	
	Total credits in the semester		57 (50-60)		Total credits in the semester		56 (50-60)

Applicable to students admitted from Academic Year 2024-25 Onwards

	Semester III				Semester IV		
Cat.	Course	L-T-P	Cr.	Cat.	Course/ Thesis	L-T-P	Cr.
DT	Thesis (Five Unit)		55	DT	Thesis (Five Unit)		55
	Total credits in the semester		55 (50-60)		Total credits in the semester		55 (50-60)

3 Credits of practical components are attached with core course and 3 Credits of Practical Laboratory added separately as per requirements of the Course

Subjec	t	Thermodynamics					
Course	description	M.Tech in Renewable Energy / Semester – 01 / Mandatory					
Total c	redits	9 Teaching hours 42		42			
SrNo	Торіс			i	Hours		
01	An introduction applications.	on to classical thermodyna	mics and transport with e	ngineering	02		
02	Basic postulat	es and laws of thermodyn	amics		03		
03	Work and hea	t, enthalpy, entropy and a	vailability and irreversibili	ty	05		
04	Steady and Ur	nsteady first and second la	w analyses		05		
05	Equations of s	tate, compressibility funct	tions, and Law of Correspo	onding States.	04		
06	Thermodynam	nic potentials, chemical an	nd phase equilibrium, phas	e transitions	05		
07	Thermodynam	nic properties of solids, liq	uids, and gases.		04		
08	Combustion and thermochemistry				06		
09 Analysis of ad		vanced power cycles and HVAC applications		08			
	•			TOTAL	42		

Thermodynamics: An Engineering Approach - Cengel, Y. A. and Boles, M. A. (McGraw-Hill, 2014)

Fundamentals of Engineering Thermodynamics - Moran, J. M., Shapiro, H. N., Boettner, D. D. and Bailey M. B. (Wiley, 2014)

Fundamentals of Classical Thermodynamics - Van Wylen, Sonntag, and Borgnakke, (Wiley, 1994)

Advanced Engineering Thermodynamics - Adrian Bejan (John Wiley & Sons, 2016)

Energy Systems: A New Approach to Engineering Thermodynamics - (CRC Press, 2012)

Subjec	t	Mathematical	techniques					
Course	e description	M.Tech in Ren	M.Tech in Renewable Energy / Semester – 01 / Mandatory					
Total o	credits	9 Teaching hours 42		42				
SrNo	Торіс				Hours			
01	Determinants	, Matrix and vec	tor algebra		03			
02	Solution of Lir	iear Systems			03			
03	The Algebraic	Eigenvalue Prot	blem		03			
04	Topics in Linea	ar Algebra and C	Calculus		06			
05	Transforms ar	nd Fourier series			05			
06	Introduction t	o Optimization			05			
07	Topics in Num	erical Analysis			08			
08	Ordinary Diffe	Ordinary Differential Equations						
09	09 Partial Differential Equation				03			
10	Probability an	d statistics			03			
				TOTAL	42			

Mathematical Techniques: An Introduction for the Engineering, Physical, and Mathematical Sciences - Dominic Jordan and Peter Smith (Oxford University Press, 2008)

Mathematical Methods for Engineers and Scientists 1 - Tang, Kwong-Tin (Springer, 2007)

Mathematical Methods for Engineers and Scientists 2 - Tang, Kwong-Tin (Springer, 2007)

Mathematical Methods for Engineers and Scientists 3 - Tang, Kwong-Tin (Springer, 2007)

Mathematical Techniques for Engineers and Scientists - Larry C. Andrews, Ronald L. Phillips (SPIE Press, 2003)

Advanced Engineering Mathematics - Erwin Kreyszig (John Wiley & Sons, 2010)

Subjec	t	Introduction to Energy Systems				
Course	description	M.Tech in Renewable Ene	rgy / Semester – 01 / M	andatory		
Total credits		9 Teaching hours 42		42		
SrNo	Торіс				Hours	
01	Overview of e	nergy systems, power vs er	ergy		02	
02	Sources of Ene	ergy : Conventional and Rer	newable		03	
03	Fuel and comb	oustion			03	
04	Basics of elect	rical engineering			03	
05	Power genera	tion, transmission and distr	ibution systems		03	
06	Thermal energ	gy, thermodynamic cycles a	nd power stations		03	
07	Internal comb	ustion engines (engines and	d turbines)		03	
08	Nuclear energ	y and reactors			03	
09	Hydro power s	systems			02	
10	Solar energy s	ystems			03	
11	Wind energy s	systems			03	
12	Biomass energ	gy systems			03	
13	Ocean thermal, tide and wave energy systems					
14	Small, mini and micro hydro systems				02	
15	Geothermal e	nergy systems			02	
16	Carbon footpr	int of energy conversion sy	stems		02	
				TOTAL	42	

Powerplant Technology - M. M. El Wakil (McGraw Hill Education, 2017)

Applied Combustion - Eugene L. Keating (CRC Press, 2007)

Renewable Energy Systems: Advanced Conversion Technologies and Applications - Fang Lin Luo, Ye Hong (CRC Press, 2017)

Understanding Renewable Energy Systems - Volker Quaschning (Routledge, 2016)

Wind Energy Explained – J.F.Manwell, J.G. McGowan and A.L. Rogers (John Wiley & Sons Ltd.)

Solar Energy Engineering: Processes and Systems - Soteris A. Kalogirou (Academic Press, 2009)

Biomass Gasification Principles and Technology, Energy technology review No. 67, - T.B. Read (Noyes Data Corp., 1981)

Understanding Clean Energy and Fuels from Biomass - H. S. Mukunda Wiley (2011)

Ocean Energy - Laura K. Murray (ABDO Publishing, 2016)

Comprehensive Energy Systems (Elsevier, 2018)

Subject		Materials for Energy Systems			
Course	e description	escription M.Tech in Renewable Energy / Semester – 01 / Mandatory			
Total o	credits	9	Teaching hours	42	
SrNo	Торіс				Hours
01	turbine oper temperature	Fossil and Nuclear energy systems : Materials and coatings for super-critical turbine operation, corrosion resistant alloys for turbine blades, High temperature structural materials, proliferation resistant ceramics and coating technology, long life nuclear waste containment materials, Oxide dispersion strengthened alloys			
02	Solar energy systems: High efficiency and low cost solar cells, thin film technology based cells, low cost materials, novel nano surfaces to reduce reflection and expand capture spectrum band, end of life material recycle, concentrating solar power, materials with high solar absorbance and low thermal emittance, Electrochemical/catalytic and Dye sensititised solar cells			08	
03		systems : Smart blade mate mproving gearing efficiency	-	djustment,	08
04					08
		rossion resistant materials for biofuel processing, Advance hermochemical conversion		05	
		ing power distribution cable	es, High temperature super	conducting	05
				TOTAL	42

Nuclear Materials Science - Karl R. Whittle (Iop Publishing Limited, 2016)

Nuclear Corrosion Science and Engineering - Damien Feron (Elsevier, 2012)

Thin Film Solar Cells: Fabrication, Characterization and Applications - Jef Poortmans, Vladimir Arkhipov (John Wiley & Sons, 2006)

Advanced Materials Science and Engineering of Carbon - Michio Inagaki, Feiyu Kang, Masahiro Toyoda, Hidetaka Konno (Butterworth-Heinemann, 2013)

Wind Turbine Technology: Principles and Design - Muyiwa Adaramola (CRC Press, 2014)

Development of Form-Adaptive Airfoil Profiles for Wind Turbine Application - Irfan Ahmed (kassel university press GmbH, 2017)

Materials for Advanced Batteries - D. Murphy (Springer Science & Business Media, 2013)

Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications - Kazunori Ozawa (John Wiley & Sons, 2012)

Lithium-Ion Batteries: Advanced Materials and Technologies - Xianxia Yuan, Hansan Liu, Jiujun Zhang (CRC Press, 2016)

Nanomaterials in Advanced Batteries and Supercapacitors - Kenneth I. Ozoemena, Shaowei Chen (Springer, 2016)

Materials For Biofuels - Ragauskas Arthur J (World Scientific, 2014)

Fundamentals of Materials for Energy and Environmental Sustainability - David S. Ginley, David Cahen (Cambridge University Press, 2011)

Composite Superconductors - K. Osamura (CRC Press, 1993)

High-Temperature Superconductors - X G Qiu (Elsevier, 2011)

Subjec	t	Instrumentation and control of energy systems				
Course	description	M.Tech in Renewable Ene	rgy / Semester – 01 / Mand	atory		
Total credits		9	Teaching hours	42		
SrNo	Торіс				Hours	
01	Introduction t	o process control			02	
02	Electrical com	ponents, Analog and Digital	electronics		05	
03	Micromechan	ical devises and smart sense	ors		03	
04	Pressure, leve	l and flow sensing			03	
05	Heat and tem	perature sensing			03	
06	Position, force	e and light sensing			03	
07	Humidity and	other sensors			02	
08	Regulators, va	lves and motors			02	
09	Programmable	e logic controller, signal con	ditioning and transmission		03	
10	Process contro	ol			03	
11	Thermal powe	er plant : Boiler and turbine	instrumentation and contro	bl	03	
12	Thermal powe	er plant : Effluent and emiss	ion monitoring and control		02	
13	Hydroelectric power generation, regulation & monitoring of voltage & (03	
	frequency of c	output power.				
14	4 Nuclear power control station			03		
15	Diesel generat	tor control			02	
				TOTAL	42	

Fundamentals of Industrial Instrumentation and Process Control - William C. Dunn (Mcgraw Higher Ed, 2009)

Fundamentals of Instrumentation and Measurement - Dominique Placko (John Wiley & Sons, 2013)

Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants - Swapan Basu, Ajay Debnath (Academic Press, 2014)

Nuclear Reactor Kinetics and Plant Control - Yoshiaki Oka, Katsuo Suzuki (Springer Science & Business Media, 2013)

Subjec	t	Energy, environment and sustainability						
Course	description	M.Tech in Ren	M.Tech in Renewable Energy / Semester – 02 / Core					
Total c	redits	9	Teaching hours	42				
SrNo	Торіс		i		Hours			
01	Energy				02			
02	Energy and hu	ıman activities			03			
03	Energy source	S			04			
04	Energy and de	evelopment			04			
05	Energy facts				04			
06	Energy and en	vironment			04			
07	Technical solu	tions			06			
08	Policies to red	luce environmer	tal degradation		06			
09	09 World energy trends		04					
10 Energy and life sty		e style			05			
				TOTAL	42			

Energy, Environment and Development - José Goldemberg, Oswaldo Lucon (Earthscan, 2010 - Nature)

Climate Change and Global Energy Security: Technology and Policy Options - Marilyn A. Brown, Benjamin K. Sovacool (MIT Press, 2011)

Exergy: Energy, Environment and Sustainable Development - Ibrahim Dincer, Marc A. Rosen (Newnes, 2012)

Subjec	t	Energy storage			
Course	Course description M.Tech in Renewable Energy / Semester – 02 / Core				
Total c	redits	9 Teaching hours 42			
SrNo	Торіс		I		Hours
01	General conce	epts of energy stora	ge		02
02	Thermal energ	gy storage			04
03	Reversible che	emical reactions			03
04	Energy storage	e in organic fluids			04
05	Mechanical er	nergy storage			03
06	Electromagne	tic energy storage			03
07	Hydrogen stor	age			03
08	Electrochemic	al energy storage			03
09	Non rechargea	able batteries			03
10	Lead acid batt	eries			03
11	Energy storage for medium to large applications				
12	Storage of ene	ergy for vehicle prop	pulsion		04
13	Economics of energy storage				
				TOTAL	42

Energy Storage: Fundamentals, Materials and Applications - Robert Huggins (Springer, 2015)

Energy Storage for Power Systems - A.G. Ter-Gazarian (Institution of Engineering and Technology, 2011)

Energy Storage - Crawley Gerard M (World Scientific, 2017)

Thermal Energy Storage: Systems and Applications - Ibrahim Dincer (John Wiley & Sons, 2011)

Lithium Batteries: Science and Technology - Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib (Springer, 2015)

Subjec	t	Electrical conversion, cont	trol and grid integration		
Course	edescription	M.Tech in Renewable Ene	rgy / Semester – 02 / Core		
Total c	redits	9	Teaching hours	42	
SrNo	Торіс				Hours
01	Introduction				02
02	Integration of	distributed energy resource	es in distribution power sys	stems	03
03	Operational as	spects of distribution syster	ns with massive DER penet	rations	04
04	Prediction of p	photovoltaic power generat	ion output and network op	peration	03
05	Prediction of v	wind power generation out	out and network operation		03
06	Energy manag	ement systems for DERs			04
07	Protection of	DERs			03
08	Lightning prot	ections of renewable energ	y generation systems		02
09	Distributed en	ergy resources and power	electronics		04
10	AC/DC microg	rids			04
11	Stability problems of distributed generators				04
12	2 Virtual synchronous generators and their applications in microgrids		04		
13	3 Application of DERs in electricity market				02
				TOTAL	42

Integration of Distributed Energy Resources in Power Systems : Implementation, Operation and Control - Toshihisa Funabashi (Academic Press, 2016)

Large Scale Grid Integration of Renewable Energy Sources - Antonio Moreno-Munoz (Institution of Engineering and Technology, 2017)

Subjec	t	Photovoltaic p	ower plants		
Course	description	M.Tech in Ren	ewable Energy / Semester – 02 / Ele	ective	
Total c	redits	9 Teaching hours 42			
SrNo	Торіс		I	I	Hours
01	Introduction t	o photovoltaics			02
02	Basic function	al principles of	photovoltaics		04
03	Crystalline silio	con technologie	S		03
04	Chalcogenide	thin film solar c	ells		03
05	Thin film silico	n-based PV tecl	nnologies		04
06	Organic photo	voltaics			03
07	Characterizati	on and measure	ements methods		04
08	III-V and PV co	oncentrator tech	nologies		04
09	PV modules ar	nd manufacturir	ng		03
10	PV systems and applications (
11	PV converters	and batteries			04
12	PV deploymer	nt in distributior	n grids		04
				TOTAL	42

Photovoltaic Solar Energy: From Fundamentals to Applications - Angèle Reinders, Pierre Verlinden, Alexandre Freundlich (John Wiley & Sons, 2017)

Handbook of Photovoltaic Science and Engineering - Antonio Luque, Steven Hegedus (John Wiley & Sons, 2011)

High-Efficiency Solar Cells: Physics, Materials, and Devices - Xiaodong Wang, Zhiming M. Wang (Springer Science & Business Media, 2013)

Solar Power Generation - Paul Breeze (Academic Press, 2016)

Advances in Solar Photovoltaic Power Plants - Md. Rabiul Islam, Faz Rahman, Wei Xu (Springer, 2016)

Solar Photovoltaic Projects in the Mainstream Power Market - Philip Wolfe (Routledge, 2013)

Subjec	t	Wind energy	systems				
Course	edescription	M.Tech in Rei	M.Tech in Renewable Energy / Semester – 02 / Elective				
Total c	redits	9	Teaching hours42				
SrNo	Торіс				Hours		
01	Wind Energy	Гoday			02		
02	Wind: Origin a	and Local Effect	S		04		
03	Physics of Wir	nd Energy			04		
04	Components of	of a Wind Energ	gy Converter		05		
05	Design Consid	erations			06		
06	Operation and	Control of Wi	nd Energy Converters		06		
07	Economics an	Economics and Policy Issues					
08	08 Life Cycle Assessment of a Wind Farm				06		
09 Outlook					04		
	TOTAL						

Introduction to Wind Energy Systems: Basics, Technology and Operation - Hermann-Josef Wagner, Jyotirmay Mathur (Springer, 2017)

Wind Power Basics: A Green Energy Guide - Dan Chiras (New Society Publishers, 2010)

Wind Power in Power Systems - Thomas Ackermann (John Wiley & Sons, 2012)

Wind Energy Systems: Optimising Design and Construction for Safe and Reliable Operation - John Dalsgaard Sørensen, Jens N Sørensen (Elsevier, 2010)

Advances in Wind Energy Conversion Technology - Mathew Sathyajith, Geeta Susan Philip (Springer Science & Business Media, 2011)

Wind Energy Conversion Systems: Technology and Trends - S.M. Muyeen (Springer Science & Business Media, 2012)

Wind Energy Generation: Modelling and Control - Olimpo Anaya-Lara, Nick Jenkins, Janaka B. Ekanayake, Phill Cartwright, Michael Hughes (John Wiley & Sons, 2011)

Subject		Small hydro energy systems				
Course	ve					
Total c	redits	9 Teaching hours 42				
SrNo	Торіс				Hours	
01	Introduction :	Key features of small hydro	schemes		02	
02	Scheme identification : Site survey, hydrology and geology, cost estimates and environmental assessment				03	
03	Preliminary analysis : Hydrology, Geology, Penstocks and intakes, Turbine selection, Powerhouse arrangement				06	
04	Detailed desig	n of intake works, canals ar	nd penstocks		06	
05	Turbine select		06			
06	Generators an	d electrical systems			04	
07	Auxiliary plant	I			04	
08	Specifications and contracts			03		
09	Powerhouse layout and design				04	
10	Construction, commissioning and operation				04	
	TOTAL					

Small Hydroelectric Engineering Practice - Bryan Leyland (CRC Press, 2014)

Planning and Installing Micro-Hydro Systems: A Guide for Designers, Installers and Engineers - Chris Elliott (Routledge, 2014)

Designing and Building Mini and Micro Hydropower Schemes: A Practical Guide - Luis Rodríguez, Teodoro Sanchez (Practical Action Pub., 2011)

Hydropower - Paul Breeze (Academic Press, 2018)

Introduction to Hydro Energy Systems: Basics, Technology and Operation - Hermann-Josef Wagner, Jyotirmay Mathur (Springer Science & Business Media, 2011)

Subject		Biomass energy systems			
Course	description	M.Tech in Renewable Ene	ergy / Semester – 02 / Electi	ve	
Total c	redits	9	Teaching hours	42	
SrNo	Торіс				Hours
01	Properties of E	Biomass Fuels			03
02	Sustainability	Sustainability Considerations for Electricity Generation from Biomass			
03	Combustion of Biomass				04
04	Gasification of Biomass				04
05	Pyrolysis of Bi	omass			04
06	Hydrothermal	Processing of Biomass			04
07	Anaerobic Dig	estion			04
08	Esterification				04
09	Fermentation of Biomass				04
10	Fischer-Tropso	ch Synthesis from BioSynga	S		05
11	Bio-Oil Applica	ations and Processing			04
				TOTAL	42

Biomass Processing Technologies - Vladimir Strezov, Tim J. Evans (CRC Press, 2014)

Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation - Erik Dahlquist (CRC Press, 2013)

Biomass for Energy in the Developing Countries: Current Role, Potential, Problems, Prospects - D. O. Hall, G. W. Barnard, P. A. Moss (Elsevier, 2013)

Biofuels and Bioenergy: Processes and Technologies - Sunggyu Lee, Y.T. Shah (CRC Press, 2012)

Bioenergy Research: Advances and Applications - Vijai G. Gupta, Maria Tuohy, Christian P Kubicek, Jack Saddler, Feng Xu (Newnes, 2013)

An Introduction to Bioenergy - Nigel G Halford (World Scientific Publishing Company, 2015)

Bioenergy: Principles and Applications - Yebo Li, Samir Kumar Khanal (John Wiley & Sons, 2016)

Biorefineries: Targeting Energy, High Value Products and Waste Valorisation - Miriam Rabaçal, Ana F. Ferreira, Carla A. M. Silva, Mário Costa (Springer, 2017)

Subject		Geothermal energy systems					
Course	description	M.Tech in Ren	M.Tech in Renewable Energy / Semester – 02 / Elective				
Total c	redits	9	-	Feaching hours	42		
SrNo	Торіс		I			Hours	
01	Geothermal e	nergy as a natur	al resource a	nd potential		03	
02	Geology of ge	Geology of geothermal regions				04	
03	Transport pro	Transport processes in geothermal reservoirs				06	
04	Exploration st	Exploration strategies and techniques				04	
05	Geothermal w	ell digging				03	
06	Reservoir engi	neering				04	
07	Single, double	and triple flash	steam power	plants		06	
08	Dry steam pov	Dry steam power plants			03		
09	Binary cycle p	ower plants				03	
10	Advanced geo	thermal energy	conversion sy	vstems		06	
					TOTAL	42	

Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact - Ronald DiPippo (Butterworth-Heinemann, 2015)

Flow and Heat Transfer in Geothermal Systems: Basic Equations for Describing and Modeling Geothermal Phenomena and Technologies - Aniko Toth, Elemer Bobok (Elsevier, 2016)

Geothermal Energy: Clean Power from the Earth's Heat - John Harvey Sass, Wendell A. Duffield (US Department of interior and US Department of Survey Circular 1249, 2003)

Geothermal Reservoir Engineering - Malcolm Alister Grant, Paul F Bixley (Academic Press, 2011)

Geothermal Engineering: Fundamentals and Applications - Arnold Watson (Springer Science & Business Media, 2013)

Subject Course description		Tidal and wave energy systems			
		M.Tech in Renewable Energy / Semester – 02 / Elective			
Total credits		9	Teaching hours	42	
SrNo	rNo Topic			Hours	
01	Introduction				02
02	The Marine Resource				
03	Wave Energy Technology				
04	Tidal Energy Technology				
05	Device Design				05
06	Power System	S			03
07	Physical Mode	elling			04
08	Numerical Mo	delling			05
09	Environmental Effects				03
10	Consenting an	d Legal Aspects			02
11	The Economic	s of Wave and Tidal	Energy		04
				TOTAL	42

Wave and Tidal Energy - Deborah GreavesGregorio Iglesias (Wiley, 2018)

Ocean Energy: Tide and Tidal Power - R. H. Charlier, Charles W. Finkl (Springer Science & Business Media, 2009)

Offshore Renewable Energy: Accelerating the Deployment of Offshore Wind, Tidal, and Wave Technologies (Routledge, 2013)

Electricity from Wave and Tide: An Introduction to Marine Energy - Paul A. Lynn (John Wiley & Sons, 2013)

Ocean Energy: Governance Challenges for Wave and Tidal Stream Technologies - Glen Wright, Sandy Kerr, Kate Johnson (Routledge, 14-Dec-2017)

Marine Renewable Energy: Resource Characterization and Physical Effects - Zhaoqing Yang, Andrea Copping (Springer, 2017)

Ocean Wave Energy: Current Status and Future Prespectives - Joao Cruz (Springer Science & Business Media, 2007)

Tidal Power: Harnessing Energy from Water Currents - Victor M. Lyatkher (John Wiley & Sons, 2014)

Subject		Solar thermal systems				
Course	edescription	M.Tech in Rene	M.Tech in Renewable Energy / Semester – 02 / Elective			
Total credits		9 Teaching hours 42		42		
SrNo	Торіс			Hours		
01	Solar Radiatio	n and heat trans	fer		03	
02	Radiation Cha	racteristics of Op	paque Materials		02	
03	Radiation Trar	nsmission throug	h Glazing: Absorbed Radiation		02	
04	Flat-Plate and Concentrating Collectors				04	
05	Energy Storag	е			03	
06	Solar Process	Loads and econd	omics		06	
07	Solar Water H	eating: Active an	d Passive		04	
08	Building Heati	ng: Active, Passiv	ve and Hybrid Methods		04	
09	Solar Cooling				02	
10	Solar Industrial Process Heat and Thermal Power Systems			04		
11	Solar Ponds: E	vaporative Proce	esses		04	
12	Design of Activ	ve Systems, Pass	ive and Hybrid Systems		04	
	•			TOTAL	42	

Solar Engineering of Thermal Processes, 4th Edition - John A. Duffie, William A. Beckman (Wiley, 2013)

Solar Thermal Systems: Successful Planning and Construction - Dr Felix A. Peuser, Karl-Heinz Remmers, Martin Schnauss (Routledge, 2013)

Solar Energy Engineering: Processes and Systems - Soteris A. Kalogirou (Academic Press, 2013)

Solar Energy: The State of the Art - Jeffrey M. Gordon (Routledge, 2013)

Solar Energy: Principles of Thermal Collection and Storage - Sukhatme (Tata McGraw-Hill Education, 2008)

Harnessing Solar Heat - Brian Norton (Springer Science & Business Media, 2013)

Subject		Energy systems modelling and analysis			
Course description Total credits		M.Tech in Renewable Energy / Semester – 03 / Elective			
		9	Teaching hours	42	
SrNo	Торіс	•		I	Hours
01	Modelling ove of models.	erview-levels of ana	alysis, Steps in model develo	pment, examples	02
02	Quantitative T	Fechniques: Interpol	lation-polynomial, Lagrangia	n.	02
03	Curve-fitting,	regression analysis,	solution of transcendental e	quations.	03
04	Systems Simulation-information flow diagram, solution of set of nonlinear algebraic equations, successive substitution, Newton Raphson.				03
05	Examples of energy systems simulation Optimisation: Objectives/constraints, problem formulation.			03	
06	Unconstraine	ned problems- Necessary & Sufficiency conditions.			
07	Constrained Optimisation- Lagrange multipliers, constrained variations, Kuhn- Tucker conditions.			variations, Kuhn-	03
08	Linear Program	mming - Simplex tab	bleau, pivoting, sensitivity an	alysis.	02
09	Dynamic Prog	ramming.			03
10	Search Techni	iques- Univariate / N	Aultivariate with case studie	S	03
11	Energy Demar	nd Models Statistica	I and Optimization based mo	odels	04
12		uncertainty- probabi	-		03
13	Trade-offs bet	tween capital & ene	rgy using Pinch Analysis.		02
14			io Generation, Input Output	Model.	03
15			ntial equations- Overviev		03
	•			TOTAL	42

F. Carl Knopf, Modeling, Analysis and Optimization of Process and Energy Systems, Wiley, 2011

W. F. Stoecker Design of Thermal Systems, Mcgraw Hill, 1981

S.S.Rao Optimisation theory and applications, Wiley Eastern, 1990

S.S. Sastry Introductory methods of numerical analysis, Prentice Hall, 1988

P. Meier Energy Systems Analysis for Developing Countries, Springer Verlag, 1984

R.de Neufville, Applied Systems Analysis, Mcgraw Hill, International Edition, 1990

Beveridge and Schechter, Optimisation Theory and Practice, Mcgraw Hill, 1970

Hoomen Farzaneh, Energy Systems Modelling Principles and Aplication, Springer

2019.

Subject		Reliability and life testing / analysis					
Course	edescription	M.Tech in Ren	M.Tech in Renewable Energy / Semester – 03 / Elective				
Total c	redits	9	Teaching hours	42			
SrNo	Торіс	1			Hours		
01	Concepts and	Concepts and Mathematical Models for Reliability					
02	Reliability and	Reliability and Life Cycle					
03	Reliability Tes	ting and Estima [.]	tion		06		
04	Databases of	failure rates of e	electronics/mechanical components		04		
05	System Reliab	ility and Redund	dancy		06		
06	System Safety	System Safety Analysis			06		
07	Maintainability and Availability			05			
08	Reliability Ma	nagement			05		
	<u> </u>			TOTAL	42		

Introduction to Reliability Engineering - E. E. Lewis (John Wiley & Sons, 1996)

Practical Reliability Engineering - Patrick O'Connor, Andre Kleyner (Wiley-Blackwell, 2012)

Handbook of Reliability Engineering and Management 2/E - W. Grant Ireson, Clyde F. Coombs, Richard Y. Moss (McGraw-Hill Education, 1996)

Reliability Theory and Practice - Igor Bazovsky (Dover Publications Inc, 2004)

Subject		Economics and financing of energy systems				
Course	e description	M.Tech in Re	M.Tech in Renewable Energy / Semester – 03 / Elective			
Total credits		9	Teaching hour	r s 42		
SrNo	Торіс			I	Hours	
01	Introduction a	and scope			02	
02	Economic ope	ration in powe	er systems		03	
03	Power genera	Power generation costs				
04	Financial math	nematics			04	
05	Inflation, inter	rest and cost o	f capital		04	
06	Investment ap	praisal metho	ds		05	
07	Financial and	economic anal	ysis of projects		05	
08	Introduction on cost allocation to cogeneration projects			05		
09	Overview of e	nergy markets	and prices		04	
10	Case studies				05	
				TOTAL	42	

Power and Energy Systems Engineering Economics: Best Practice Manual - Panos Konstantin, Margarete Konstantin (Springer, 2018)

Power System Economic and Market Operations - Jin Zhong (CRC Press, 2018)

Electricity Markets: Theories and Applications - Jeremy Lin, Fernando H. Magnago (John Wiley & Sons, 2017)

Power Systems and Restructuring - Nouredine Hadjsaïd, Jean-Claude Sabonnadière (John Wiley & Sons, 2013)

Subject		Urban solid waste technology and management			
Course	edescription	M.Tech in Renew	vable Energy / Semester – 03 / E	Elective	
Total credits		9 Teaching hours 42			
SrNo	Торіс				Hours
01	Introduction t	o Waste Managen	nent, Engineering and Economic	cs	02
02	Waste Charac	terization: Approa	ches and Methods		03
03	LCA of Waste Management systems				04
04	Waste Prevention and Minimization				04
05	Material recycling				04
06	Waste Collect	ion			02
07	Mechanical Tr	eatment			05
08	Thermal treat	ment : Incineratio	n, Pyrolysis and Gasification		05
09	Biological treatment : Composting, Anaerobic Digestion, Mechanical Biological and Emerging Biological Technologies			05	
10	Landfilling: Co	ncepts, Challenge	s and Environmental Issues		04
11	Special and Ha	azardous Waste			04
				TOTAL	42

Solid Waste Technology & Management - Thomas H. Christensen (Wiley, 2010)

Municipal Solid Waste Management in Developing Countries - Sunil Kumar (CRC Press, 2016)

Improving Municipal Solid Waste Management in India: A Sourcebook for Policymakers and Practitioners - P U Asnani, Chris Zurbrugg (World Bank Publications, 2007)

Sustainable Solid Waste Management - Jonathan W. C. Wong, Rao Y. Surampalli, Ammaiyappan Selvam, Tian C. Zhang, Rajeshwar D. Tyagi (American Society of Civil Engineers, 2016)

Municipal Solid Waste Management: Strategies and Technologies for Sustainable Solutions - Christian Ludwig, Stefanie Hellweg, Samuel Stucki (Springer Science & Business Media, 2012)

Solid Waste Engineering: A Global Perspective - William A. Worrell, P. Aarne Vesilind, Christian Ludwig (Cengage Learning, 2016)

description	M Task in Dawa				
	M.Tech in Renewable Energy / Semester – 03 / Elective				
redits	9	Teaching hours	42		
Торіс				Hours	
Introduction				02	
Transport biof	uels: Thermo-ph	ysical properties, production and co	ost	03	
Vegetable Oils	and biodiesel			03	
Ethanol and N	lethanol			03	
Dimethyl Ethe	r			03	
LPG and CNG				03	
Hydrogen and	Hythane			03	
Syngas				03	
Neat biofuels	and blends			03	
Effect of alter	native fuels on ei	ngine performance		05	
Engine modifi	cations required	for fuelling with alternative fuels		05	
Prospectus of	biofuels in aviati	on		02	
Life cycle asse	ssment of biojet	fuels		04	
			TOTAL	42	
	•	Wheel Perspective - Lucas Reijnde	rs, Mark Huijbr	egts (Springe	
2016)			-		
	Topic Introduction Transport biof Vegetable Oils Ethanol and M Dimethyl Ethe LPG and CNG Hydrogen and Syngas Neat biofuels Effect of altern Engine modific Prospectus of Life cycle asse References & for Road Trans & Business Med s for Aviation: Fe 016)	TopicIntroductionTransport biofuels: Thermo-phVegetable Oils and biodieselEthanol and MethanolDimethyl EtherLPG and CNGHydrogen and HythaneSyngasNeat biofuels and blendsEffect of alternative fuels on enEngine modifications requiredProspectus of biofuels in aviatiLife cycle assessment of biojetReferencess for Road Transport: A Seed to& Business Media, 2008)s for Aviation: Feedstocks, Techr016)	Topic Introduction Transport biofuels: Thermo-physical properties, production and converte co	Topic Introduction Transport biofuels: Thermo-physical properties, production and cost Vegetable Oils and biodiesel Ethanol and Methanol Dimethyl Ether LPG and CNG Hydrogen and Hythane Syngas Neat biofuels and blends Effect of alternative fuels on engine performance Engine modifications required for fuelling with alternative fuels Prospectus of biofuels in aviation Life cycle assessment of biojet fuels TOTAL References s for Road Transport: A Seed to Wheel Perspective - Lucas Reijnders, Mark Huijbr & Business Media, 2008) s for Aviation: Feedstocks, Technology and Implementation - Christopher Chuck (A	

Transportation Biofuels: Novel Pathways for the Production of Ethanol, Biogas and Biodiesel - Alwin Hoogendoorn, Han van Kasteren (Royal Society of Chemistry, 2011)

Prospects of Alternative Transportation Fuels - Akhilendra P Singh, Rashmi Avinash Agarwal, Avinash Kumar Agarwal, Atul Dhar, Mritunjay Kumar Shukla (Springer, 2017)

Alternative Fuels and Advanced Technology Vehicles: Incentives and Considerations - Thomas Huber, Jack Spera (Nova Science, 2012)

Alternative Fuels for Transportation - Arumugam S. Ramadhas (CRC PressINC, 2010)

Transitions to Alternative Vehicles and Fuels - National Research Council, Division on Engineering and Physical Sciences, Board on Energy and Environmental Systems, Committee on Transitions to Alternative Vehicles and Fuels (National Academies Press, 2013)

Green Diesel Engines: Biodiesel Usage in Diesel Engines - Breda Kegl, Marko Kegl, Stanislav Pehan (Springer Science & Business Media, 2013)

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation - Richard Folkson (Elsevier, 2014)

Subject		Hydrogen energy				
Course	description	M.Tech in Renewable Ener	rgy / Semester – 03 / Electi	ive		
Total credits		9	Teaching hours	42		
SrNo	Торіс				Hours	
01	Hydrogen ene	rgy : History and current sta	atus		04	
02	Hydrogen pro	duction through steam refo	rming		04	
03	Hydrogen production through alkaline water, PEM membrane water and steam electrolysis				06	
04	Hydrogen production through photocatalytic water splitting				03	
05	Hydrogen storage materials : Interstitial and Non-Interstitial hydrides and High surface area adsorbants				05	
06	Liquid hydroge	en carriers			02	
07	Compressed h	ydrogen : properties and st	orage tanks		03	
08	Polymer Electi	rolyte, Solid Oxide and Alkal	ine Electrolyte fuel cells		06	
09	Hydrogen combustion systems			03		
10	Hydrogen safe	ety fundametals			03	
11	Effect of hydro	ogen on mechanical propert	ies of metals		03	
	TOTAL					

Hydrogen Energy Engineering: A Japanese Perspective - Kazunari Sasaki, Hai-Wen Li, Akari Hayashi, Junichiro Yamabe, Teppei Ogura, Stephen M. Lyth (Springer, 2016)

Hydrogen Technology: Mobile and Portable Applications - Aline Léon (Springer Science & Business Media, 2008)

Hydrogen Storage Materials: The Characterisation of Their Storage Properties - Darren P. Broom (Springer Science & Business Media, 2011)

Hydrogen Storage Technology: Materials and Applications - Lennie Klebanoff (CRC Press, 2012)

Hydrogen Energy: Background, Significance and Future - Albert O. Backus (Nova Publishers, 2006)

Subject	Project – Phase 01		
Course description	M.Tech in Renewable Energy / Semester – 03 / Mandatory		
Total credits	9	Teaching hours	